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Steady periodic waves in a three-layer fluid
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A three-layer intrusion flow is considered, in which all three layers are in motion,
with different speeds, relative to the observer. Shear is present in the middle layer,
and the lowest fluid may even move oppositely to the upper two (so giving an
exchange flow). Two thin interfaces are present, above and below the moving middle
layer. A linearized analysis is presented for small wave amplitudes. Nonlinear periodic
solutions are then obtained using a Fourier technique, and reveal a range of nonlinear
phenomena, including limiting waves, multiple solutions and resonances.

1. Introduction
The propagation of steady periodic waves in layered fluids is a well-documented

phenomenon. Such a situation may arise when the continuous density profile of an
ocean or atmosphere has been approximated to one made up of multiple horizontal
layers of constant density. Typically systems of two or three layers are considered,
usually under the influence of gravity, with interest lying principally in the shape of
the interfacial wave profile(s).

Previous models have varied in complexity with the inclusion of a range of effects
and approximations. A simple case is that of Saffman & Yuen (1982) who considered
steady finite amplitude periodic waves on a vortex sheet. Their work proposes the
existence of limiting cases (such as Stokes’ corners and overhanging waves as later
computed by Meiron & Saffman 1983 and Turner & Vanden-Broeck 1986) as well
as making a distinction between the existence of steady solutions and their stability.
Another two-layer flow is that considered by Pullin & Grimshaw (1983) which
included constant vorticity and a rigid lid in the upper layer. This Boussinesq flow
displays an impressive range of geometrically limiting cases, which alter markedly as
a physical parameter such as upper layer depth is varied.

More recently some equally interesting results have been published for the case of
three-layer fluids. Although this is a natural extension, it is complicated somewhat
by the presence of two interfaces. Such situations have been characterized as
possessing free-surface waves which may induce or interact with internal interfacial
waves (Părău & Dias 2001). Michallet & Dias (1999) have considered waves in
three-layer systems that contain rigid horizontal walls above the uppermost fluid
and below the lowermost one. Their focus was on the interaction between long- and
short-wavelength modes of solutions. Similar effects were studied in nearly identical
situations by both Rus̊as & Grue (2002) and Vanden-Broeck & Turner (1992). These
latter authors included a middle layer of continuously varying density, and computed
long waves with oscillatory tails.
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The experimental work done on these types of flows is instructive. Sutherland, Kyba
& Flynn (2004) looked at an intrusive gravity current propagating in a two-layer
fluid. This was extended to account for more complex stratification by Flynn &
Sutherland (2004), who included a lower layer of variable density. Further work by
Mehta, Sutherland & Kyba (2002) on intrusions into two and three-layer fluids of
constant density emphasizes the generation of solitary wave type phenomena. These
studies illustrate the variety of practical contexts to which these intrusion flows
apply, and confirm the relevance of the theoretical calculations of the type presented
here.

The present work extends that of Forbes, Hocking & Farrow (2006), which dealt
with periodic waves on an intrusion layer flowing into a stationary fluid. In that paper,
the simplification of only allowing the central layer to be in motion permitted limiting
waves (with sharp corners at the crests) to be computed, while resonant interactions
were unavailable (or at least not found in their numerical results). Solitary wave-type
solutions are also permitted for this configuration, and were obtained by Forbes &
Hocking (2007) using both weakly nonlinear theory and direct numerical calculation.
The computation of generalized solitary waves on fluid interfaces is a rich field of
research. Akylas & Grimshaw (1992) obtained solitary waves with oscillatory tails,
for instance, while Rus̊as & Grue (2002) have computed extreme overhanging solitary
waves in a three-layer fluid. The effect of linear density stratification in each layer on
the propagation of solitary waves has been examined by Fructus & Grue (2004).

The three-layer model presented here is a straightforward one. Each layer is of
constant density, and is inviscid and incompressible. Shear (constant vorticity) is
present in the middle layer, with the two outer layers flowing (when unperturbed) at
a constant speed, such that velocity is continuous at the two interfaces. Historically,
interest in systems of this type has been with regard to their stability to small
perturbations. Lamb (1932, article 232) reported on the solution obtained by Rayleigh,
for the stability of an intrusion ‘jet’. This linearized analysis was summarized and
extended by Forbes et al. (2006). A stability analysis of the present problem was first
given by Taylor (1931). Chandrasekhar (1961) repeated this analysis with the slight
simplification of only considering small density differences between the layers. The
stability of the waves will not be considered here, however, with the focus instead being
on computing the shape of the interfaces in steady flow. As discussed by Saffman &
Yuen (1982) and Turner & Vanden-Broeck (1986), it is legitimate to make a distinction
between the existence of finite amplitude steady periodic solutions and their stability.
Techniques developed by Forbes et al. (2006) to compute periodic nonlinear interface
shapes for the related problem of intrusion currents will be adapted to the present
situation. Problems of this type (and shear flows in particular) have previously yielded
wave profiles with overhanging portions (for instance, Turner & Vanden-Broeck 1986;
Pullin & Grimshaw 1983) and the numerical scheme will be extended to account for
this possibility.

The flow we consider here is physically relevant to a number of geophysical
situations. For instance in Williams, Jenkins & Determann (1998) the circulation
generated beneath melting ice sheets and the subsequent interaction of fresh and salt
water gives rise to a type of intrusive current. In a similar fashion the agricultural
run-off or inflow into a stratified reservoir may produce an intrusion flow when it
reaches its neutral buoyancy: see, for example, Forbes et al. (2006). The outflow of
water from the Mediterranean sea into the North Atlantic, as outlined in Candela
(2001), and the associated phenomenon of ‘meddies’ is a larger-scale example of this
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kind of flow. Here patches of circulating warm salty water contribute significantly to
variations in salinity as they drift around the region.

In this paper, the model is formulated in such a way that it is possible to specify that
the upper and lower layers flow in opposite directions, giving a so-called exchange
flow. Such flows occur in a wide range of situations, for instance in the strait of
Gibraltar, as discussed by Timmermans & Pratt (2005). They are also studied from a
hydraulic perspective (e.g. Armi & Farmer 1986) with view to finding some maximal
flow rate solution.

It has been seen in work on similar problems, such as that of Părău & Dias
(2001) and Rus̊as & Grue (2002), that for a given choice of physical parameters
there may be small amplitude solutions available at multiple wavelengths for the
same wave speed. In such cases it may be possible, in a nonlinear regime, to obtain
resonant interactions between these solution modes where their respective wavelengths
are near-integer multiples. Interactions of this type are not dissimilar to Wilton’s
ripples (Wilton 1915), which are encountered for periodic gravity waves with surface
tension, or the gravity-capillary waves of Chen & Saffman (1980), where various
resonances (or ‘combination waves’) were excited as a surface tension parameter
was varied. Such waves have been seen experimentally by Mehta et al. (2002) for
the case of a bulbous intrusion into a stationary layered fluid. In this work it will
be seen that superharmonic resonant interactions are readily available and coincide
with complicated relationships between various physical parameters. These types of
resonances are often characterized as an interaction between internal and external
modes (Lewis, Lake & Ko 1974; Părău & Dias 2001), although this is not necessarily
an accurate interpretation here.

The model will be derived in § 2. A linearized solution is presented in § 3, hinting
at the possibility of resonant effects and multiple solutions. Section 4 introduces a
numerical solution method based on Fourier series and a simple Galerkin technique.
A multitude of nonlinear solutions for moderate to large amplitude waves is shown
in § 5. These are compared to the linearized solution and reveal a wide array of
nonlinear phenomena.

2. Model and governing equations
We consider a system composed of three horizontal fluid layers, all of which are in

motion, as illustrated in figure 1. Throughout this paper the top layer will be denoted
as layer 1, the middle as layer 2 and the lowest as layer 3. Each fluid layer has
constant density ρi , i = 1, 2, 3, with ρ1 < ρ2 < ρ3, and there are constant horizontal
background flow speeds c1 and c3 in the top and bottom layers, respectively. There
are two free interfaces, y = ηU and y = ηL, at the upper and lower boundaries of the
middle layer. The upper and lower layers are unbounded, of infinite vertical extent.
Constant vorticity (shear) is present in the middle layer, where the background speed
is such that it matches the outer layer speeds in the case of flat interface profiles. All
fluids are assumed to be incompressible and inviscid. The upper and lower layers are
also assumed to flow irrotationally. The flow is steady and subject to the downward
acceleration g of gravity. The shape of the two interfaces will be of particular
interest.

Non-dimensional variables will be introduced. The height of the middle layer, h,
is used as a length scale. A typical speed,

√
gh, is chosen as the velocity scale with

velocity potentials scaled with h
√

gh. The density scale is ρ2, the density of the middle
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Figure 1. Diagram of the flow configuration showing the three fluid layers moving
horizontally with waves propagating at the two interfaces y = ηU and y = ηL above and
below the middle layer.

layer. Recasting the problem in these terms, the system is characterized by four
dimensionless parameters:

F1 =
c1√
gh

, F3 =
c3√
gh

, (2.1)

D1 =
ρ1

ρ2

, D3 =
ρ3

ρ2

. (2.2)

Here F1 and F3 are Froude numbers for the upper and lower layers respectively.
These are the fluid celerities made dimensionless with respect to the characteristic
speed

√
gh of a wave in the middle layer. The two remaining parameters D1 and

D3 are density ratios relative to the density ρ2 of the middle layer, with D1 < 1 and
D3 > 1. The appropriate form of the background speed in the middle layer is

F2(y) = F3 + (F1 − F3)y. (2.3)

Here the linear dependence on y represents the constant shear. The fluid speed in this
layer matches those of the upper and lower layers on the planes y = 1 and y = 0,
respectively.

In each layer we define a velocity vector q i = ui i + vi j (i = 1, 2, 3). For the two
outer layers q i is the gradient of a velocity potential φi ,

φi = Fix + Φi

q i =

(
Fi +

∂Φi

∂x

)
i +

∂Φi

∂y
j (i = 1, 3). (2.4)

The velocity vector in the middle layer, q2, may be expressed in a similar fashion:

q2 =

(
F3 + (F1 − F3)y +

∂Φ2

∂x

)
i +

∂Φ2

∂y
j . (2.5)

Here we have effectively written the velocity as the sum of a rotational part (the linear
shear term) and an irrotational part (gradient of the velocity potential Φ2). Having
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done this we may also determine the streamfunction in the middle layer,

ψ2(x, y) = F3y +
1

2
(F1 − F3)y

2 + Ψ2(x, y) (2.6)

where the irrotational part of the streamfunction, Ψ2, is related to irrotational velocity
potential Φ2 by the Cauchy–Riemann equations.

Conservation of mass requires that φ1, Φ2 and φ3 satisfy Laplace’s equation in each
fluid layer:

∇2φ1 = 0 in ηu < y < ∞, (2.7)

∇2Φ2 = 0 in ηL < y < ηU, (2.8)

∇2φ3 = 0 in − ∞ < y < ηL. (2.9)

It is of note that the shape of these layers is determined by the shape of the two
interfaces (not known a priori), making this a highly nonlinear problem.

There are several boundary conditions which need to be defined on each interface.
Two kinematic conditions on the upper interface require that neither the upper nor
middle fluid layers may cross the interface:

vi = ui

∂ηU

∂x
(i = 1, 2). (2.10)

A single dynamic condition,

1
2
D1F

2
1 − 1

2
D1

(
u2

1 + v2
1

)
− D1(ηU − 1)

= 1
2
F 2

3 − 1
2

(
u2

2 + v2
2

)
+ (F1 − F3)ψ2 − (ηU − 1), (2.11)

is obtained (via Bernoulli’s equation) by equating pressure in each layer at the
interface.

Similarly, there are two kinematic conditions on the lower interface,

vi = ui

∂ηL

∂x
(i = 2, 3), (2.12)

for each of the lower and middle layers. The dynamic condition on the lower interface
is

1
2
F 2

3 − 1
2

(
u2

2 + v2
2) + (F1 − F3

)
ψ2 − ηL = 1

2
D3F

2
3 − 1

2
D3

(
u2

3 + v2
3

)
− D3ηL. (2.13)

The infinite vertical extent of the upper and lower fluids requires that

φ1 → F1x as y → +∞,

φ3 → F3x as y → −∞, (2.14)

for a solution to be physically reasonable. Our interest lies in investigating the nature
of periodic waves on the interfaces. As such we seek periodic solutions in x for φ1,
Φ2, φ3, ηU and ηL, which satisfy equations (2.7)–(2.14). To this end we assume that
the system is also dependent on some dimensionless wavenumber, k, which is thus an
additional dimensionless parameter, along with the Froude numbers (2.1) and density
ratios (2.2), needed to specify a solution completely.

3. Linearized solution
We now present a linearized solution to the governing equations (2.7)–(2.14). This

corresponds to the case of the two free surface shapes being sinusoidal in x and of
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small amplitude. In effect we use a small perturbation about the trivial solution of
flat interfaces and background flow for the velocity in each fluid layer, similar to that
presented by Taylor (1931) but without the time dependence. The velocity potentials
in (2.7)–(2.9) are expressed by means of the perturbed expansions

φ1(x, y) = F1x + εΦ11(x, y) + O(ε2), (3.1)

Φ2(x, y) = εΦ21(x, y) + O(ε2), (3.2)

φ3(x, y) = F3x + εΦ31(x, y) + O(ε2), (3.3)

while the lower and upper interface profiles are perturbations about y = 0 and y = 1
respectively:

ηL(x) = εHL1(x) + O(ε2), (3.4)

ηU (x) = 1 + εHU1(x) + O(ε2). (3.5)

Here ε is a small parameter with magnitude in the order of the amplitude of the wave.
Appropriate solutions to Laplace’s equation are chosen for each velocity potential,
up to a multiplicative constant:

Φ11(x, y) = a11e
−k(y−1) sin kx, (3.6)

Φ31(x, y) = a31e
ky sin kx, (3.7)

Φ21(x, y) = (c2 cosh(ky) + d2 sinh(ky)) sin kx. (3.8)

These have been chosen to have period 2π/k in x, to be odd with respect to x and
to have the properties that Φ11 and Φ31 decay to zero as y → ∞ and y → −∞,
respectively. The perturbed streamfunction (2.6) in the middle layer, ψ2, takes the
linearized form

ψ2(x, y) = F3y +
1

2
(F1 − F3)y

2 + εΨ21(x, y) + O(ε2), (3.9)

in which Ψ21 is determined from the Cauchy–Riemann equations to be

Ψ21(x, y) = (c2 sinh(ky) + d2 cosh(ky)) cos kx. (3.10)

The corresponding interface profiles will be periodic, even functions in x, and will
have the forms

HL1(x) = cos kx, HU1(x) = α cos kx, (3.11)

where α is to be determined. Substituting this perturbed solution into the boundary
conditions (2.10)–(2.13) and then discarding any terms of order ε2 or higher, we
obtain a system of six algebraic equations. These may be solved to yield the dispersion
relation

D1kF 2
3 + D3kF 2

1 + D1D3 tanh k + k2F 2
1 F 2

3 tanh k = 0, (3.12)

where

D1 = D1kF 2
1 − F1(F1 − F3) − (1 − D1),

and

D3 = D3kF 2
3 + F3(F1 − F3) − (D3 − 1).

This relation determines the co-dependency of the Froude numbers on wavenumber
such that equations (2.7)–(2.14) are satisfied to first order in the parameter ε.
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Equation (3.12) contains cubic powers of the Froude numbers, suggesting that up to
three linear solutions may exist for some fixed wavenumber. Likewise the expression
involves nonlinear functions of wavenumber k, which indicates that, for fixed Froude
numbers (2.1) and density ratios (2.2), there may be multiple linear solutions of
different wavenumber. It is impractical to try to characterize completely the effect of
varying each of the five non-dimensional parameters, so the density ratios, D1 and
D3, will be held constant at values close to 1 (representative of stratified oceans or
reservoirs), and the upper-layer Froude number will be chosen as F1 = 0.1, throughout
the results presented here.

3.1. The linearized dispersion relation

Although the dispersion relation (3.12) must ultimately be solved numerically to
determine the relationship between wavenumber k and Froude number F3, it is
instructive to consider first a limiting case. For short wavelengths (that is, large
wavenumber, k) we put tanh k ≈ 1 to reduce (3.12) to a simple cubic in F3. This may
be solved exactly to give the three approximate values

F3 ≈ 1 − D1 + F 2
1 (1 − k − kD1)

F1

, (3.13)

and

F3 ≈ −F1 ±
√

F 2
1 + 4(1 − k − D3 + kD2

3)

2(kD3 + k − 1)
, (3.14)

for the speed F3 of the lowest fluid layer. The first of these, (3.13), takes the opposite
sign to F1 (for large enough k), suggesting that the lower layer may flow in the
opposite direction to the upper layer; this is therefore an ‘exchange flow’. The two
solutions in equation (3.14) have slower speeds in the bottom layer, and typical
parameter values give one positive and one negative value for F3.

A numerical solution to (3.12) is required for small and moderate values of k. This is
obtained by holding D1, D3 and F1 constant, choosing a value for k and then solving
for F3 with Newton’s method. This was repeated over a range of initial values of F3

that were chosen to allow for multiple solutions at the same wavenumber. Having
done this we may compare the relative amplitude and phase of the two linearized
interfaces in equation (3.12) by taking

α =
HU1

HL1

=
1

(1 − D1)kF3

[kF1(D3 cosh k + kF 2
3 sinh k)

+ (D1kF1 − (F1 − F3))(kF 2
3 cosh k + D3 sinh k)], (3.15)

which will be negative if the interfaces are out of phase and positive if they are in
phase. The ratio α goes to infinity as F3 passes through zero, simply indicating a flat
lower interface at this point.

An example solution is shown in figure 2. Physically reasonable parameter values
have been chosen with D1 = 0.99, D3 = 1/D1 and F1 = 0.1. These values have
been taken to be representative of typical situations encountered in oceanography:
see Phillips (1969). In the diagram, in-phase solutions are represented by solid lines
with out of phase solutions represented by dashed lines. For this example we see
three distinct solution branches: an in-phase solution for all k with positive F3;
an out-of-phase solution available for k > κ2 with two negative F3 values at each
wavenumber; and a solution valid for k < κ1 that emerges, out of phase, from k = 0
with positive Froude number, switches phase as it passes through F3 = 0 and then
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Figure 2. Plot of the linearized dispersion relation (3.12) to give the relationship between
wavenumber k and lower-layer Froude number F3. The parameter values chosen are
upper-layer Froude number F1 = 0.1 and density ratios D1 = 0.99 and D3 = 1/0.99.

has long-wavelength solutions for increasingly strongly negative F3. Here, the values
κ1 and κ2 represent wavenumbers at which the linearized solution branches in figure 2
have turning points, with vertical slopes. Two additional points of interest on this
final branch are the Froude number where k = 0,

F30 =
(1 − D1)(D3 − 1)

F1(D3 − D1)
= 5.025 × 10−2, (3.16)

possibly corresponding to a solitary wave-like solution, and the wavenumber, κ0, for
F3 = 0, which from equation (3.12) satisfies

κ0F
2
1 + [κ0F

2
1 D1 − F 2

1 − (1 − D1)] tanh κ0 = 0 (3.17)

and may be easily found numerically (in this case κ0 = 0.8022). Similarly we may
calculate the turning points κ1 and κ2 by taking the derivative of equation (3.12) with
respect to F3, giving, in this case, κ1 = 1.044 and κ2 = 1.735.

It can be seen that two solutions exist (one in-phase and one out-of-phase) for
lower layer Froude number less than the value F30 of equation (3.16). Where the
wavenumbers of two such solutions are integer multiples of each other there is the
possibility of resonant behaviour, with solutions from the two branches superposed.
Previous studies (e.g. Părău & Dias 2001) have found that in a nonlinear regime such
resonances are readily excited for moderate to large amplitude nonlinear waves, since
at a fixed wavenumber, the Froude number may vary (from its linearized value) as
amplitude increases, allowing nearby resonances to be encountered. The likelihood of
a particular resonance being available for a value of F3 may be evaluated with the
aid of figure 3. Here the ratio of the short and long wavenumbers has been plotted
against F3. It can be seen that this ratio becomes large for strongly negative F3,
as well as where F3 → F30 and F3 → 0. The dotted horizontal lines indicate where
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Figure 3. Plot of the ratio of wavenumbers when two linearized solutions exist for the same
lower-layer Froude number. The lower-layer Froude number F3 is shown on the horizontal
axis. Linear resonance is possible where the ratio is integer-valued.

the ratio is integer valued. It may be seen that, for instance, linear theory predicts
1:2-type resonances near F3 ≈ −0.08.

4. Nonlinear solutions and numerical scheme
We will now outline a numerical procedure to obtain periodic solutions to the

(fully nonlinear) equations (2.7)–(2.14). This is essentially a Galerkin-type method
used to determine the coefficients of some Fourier series. There is a possibility that
the interfacial profiles may become multivalued (as in Pullin & Grimshaw 1983 and
Rus̊as & Grue 2002) and a reparametrization of the system involving arclength will
be introduced to deal with this possibility.

Appropriate solutions to Laplace’s equations (2.7)–(2.9) (subject to (2.14)) will be
Fourier series of the form

Φ1 =

N∑
n=1

Bne
−nk(y−1) sin nkx, (4.1)

Φ2 =

N∑
n=1

[Cn cosh nk(y − 1/2) + Dn sinh nk(y − 1/2)] sin nkx, (4.2)

Φ3 =

N∑
n=1

Fne
nky sin nkx, (4.3)

with these approximate solutions becoming exact as N → ∞. It is occasionally
convenient numerically to replace the hyperbolic functions in Φ2 with simple
exponential functions.
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It is convenient to parametrize each interface using an arclength s, so that each
interface is represented in the form (x(s), y(s)). A change of variables will now be
made with a scaled arclength, ξ , defined as

ξ =
2πs

L
.

Here, L is the total arclength along one wave cycle; this is therefore a parameter
which is essentially equivalent to a measure of amplitude and need not be computed
explicitly. The use of an arclength leads to an extra condition which must be satisfied
on each interface, namely (

dx

dξ

)2

U,L

+

(
dy

dξ

)2

U,L

=
L2

U,L

4π2
, (4.4)

where the subscripts U and L refer to the upper and lower profiles, respectively. This
is derived from the usual Pythagorean relationship dx2 + dy2 = ds2. The periodic
functions representing the upper interface (x, y) = (xU, ηU ) and the lower interface
(x, y) = (xL, ηL) are selected to be Fourier series of the form

ηU = 1 + P0 +

N∑
n=1

Pn cos nξ, (4.5)

ηL = R0 +

N∑
n=1

Rn cos nξ, (4.6)

xU =
ξ

k
+

N∑
n=1

Tn sin nξ, (4.7)

xL =
ξ

k
+

N∑
n=1

Un sin nξ, (4.8)

which also become exact as N → ∞.
As we seek finite amplitude nonlinear wave solutions for the interface profiles,

it is necessary to define some measure of wave amplitude. Half the peak-to-trough
displacement of the lower interface, AL, is chosen here, and may be calculated from

2AL = ηL(0) − ηL(π). (4.9)

This adds an extra parameter to this system, as well as an extra condition which must
be satisfied by our solution. Where the upper interface is of much larger amplitude, its
displacement may be used instead of equation (4.9) to define the amplitude parameter.

A nonlinear solution is characterized by the 8N + 3 coefficients from the velocity
potentials (the Bn, Cn, Dn and Fn), the coefficients from the interface profile coordinates
(the Pn, Rn, Tn and Un) and the lower layer Froude number, F3. The numerical scheme
involves forming a vector of unknowns, V , from these coefficients,

V = [B; C; D; F; P; R; T ; U; P0; R0; F3]
T,

where B = [B1, . . . , Bn] , C = [C1, . . . , Cn] and so on, and then iteratively solving for
the components of this vector with a Newton’s method routine in 8N +3 dimensions,
seeking to minimize an error vector E. The first 8N components of the error are
calculated by successively multiplying (2.10)–(2.13) and (4.4) by a Fourier basis
function (N times for each equation) and integrating over one period. The remaining
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three sets of components come from the two dynamic conditions (2.11) and (2.13)
integrated over a period and the wave amplitude condition. Explicitly, the components
of the error vector E are derived from the two upper interface kinematic conditions
(2.10) on (x, y) = (xU, ηU ),

∫ π

−π

(
v1

∂xU

∂ξ
− u1

∂ηU

∂ξ

)
sin jξdξ = 0, (4.10)∫ π

−π

(
v2

∂xU

∂ξ
− u2

∂ηU

∂ξ

)
sin jξdξ = 0, (4.11)

for j = 1, . . . , N , suitably decomposed and integrated. Similarly, from the lower
interface kinematic conditions (2.12), evaluated on (x, y) = (xL, ηL), we obtain

∫ π

−π

(
v2

∂xL

∂ξ
− u2

∂ηL

∂ξ

)
sin jξdξ = 0, (4.12)∫ π

−π

(
v3

∂xL

∂ξ
− u3

∂ηL

∂ξ

)
sin jξdξ = 0, (4.13)

for j = 1, . . . , N . The upper dynamic condition (2.11) is first integrated to give one
error component,

∫ π

−π

[
1
2
F 2

3 − 1
2
D1F

2
1 − 1

2
(u2

2 + v2
2) + 1

2
D1(u

2
1 + v2

1)

+ (F1 − F3)ψ2 − (1 − D1)(ηU − 1)
]
dξ = 0, (4.14)

and then multiplied by the even basis functions cos jξ to give a further N error
components

∫ π

−π

[
1
2
F 2

3 − 1
2
D1F

2
1 − 1

2
(u2

2 + v2
2) + 1

2
D1(u

2
1 + v2

1)

+ (F1 − F3)ψ2 − (1 − D1)(ηU − 1)
]
cos jξdξ = 0, (4.15)

for j = 1, . . . , N . Likewise, another N + 1 components are obtained by applying the
same procedure to the lower dynamic condition (2.13),

∫ π

−π

[
1
2
(1 − D3)F

2
3 − 1

2
(u2

2 + v2
2) + 1

2
D3(u

2
3 + v2

3)

+ (F1 − F3)ψ2 − (1 − D3)ηL

]
dξ = 0, (4.16)∫ π

−π

[
1
2
(1 − D3)F

2
3 − 1

2
(u2

2 + v2
2) + 1

2
D3(u

2
3 + v2

3)

+ (F1 − F3)ψ2 − (1 − D3)ηL

]
cos jξdξ = 0, (4.17)

for j = 1, . . . , N . Finally, multiplying the two arclength conditions (4.4) by the even
Fourier basis functions and integrating provides a further 2N components of the error
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vector, ∫ π

−π

[(
∂xU

∂ξ

)2

+

(
∂ηU

∂ξ

)2
]

cos jξdξ = 0, (4.18)

∫ π

−π

[(
∂xL

∂ξ

)2

+

(
∂ηL

∂ξ

)2
]

cos jξdξ = 0, (4.19)

for j = 1, . . . , N . The last component of the error vector comes from the wave
amplitude condition (4.9) on the lower interface,

N∑
n=1

Rn[1 − cos nπ] − 2AL = 0, (4.20)

which has been derived using the Fourier series (4.6).
All integrals in equations (4.10)–(4.19) are evaluated using a simple trapezoidal rule

over a grid with equal point spacing, since this is exponentially accurate for periodic
integrands: see Atkinson (1978, p. 253). To this end the interface profiles (and then
their associated derivatives) are computed at each of the grid points, and these profiles
are used to compute the velocities and streamfunctions on the two free surfaces. All
these are used, in turn, to calculate the components of the error vector. It is required
that sufficiently many grid points are used for the integrals to be evaluated accurately;
success was achieved using about 16N grid points. The number of coefficients used
in the series, N , was chosen to be at most 201. It was found that N = 51 performed
well, with 801 grid points used in the integration.

This numerical scheme is sensitive to the absolute size of the velocity potential
coefficients Bn, Cn, Dn and Fn. In particular, the hyperbolic functions in the middle
layer potential are susceptible to becoming very large, which in turn affects the
convergence of the Newton’s method routine. Such ill-conditioning may be avoided
by rewriting each coefficient in a new scaled form,

Bn = B∗
n exp(nk(β − 1)) (4.21)[

Cn

Dn

]
=

[
C∗

n

D∗
n

]
1

cosh nk(δ − 1/2)
(4.22)

Fn = F ∗
n exp(−nkγ ), (4.23)

with these replacing the original coefficients in the vector of unknowns. For small
amplitude waves it is satisfactory for the scaling parameters β , γ and δ to be set to
zero. As the amplitude of the waves increases these values may be increased.

To improve the rate of convergence in the Newton’s method scheme the initial
guess of a previously calculated solution of a smaller amplitude was used, that is,
V iinit

= V i−1f inal
. This was further improved (on occasion) by using a scaled linear

interpolation based on two previous solutions of smaller amplitude with the initial
guess

V iinit
= V i−1f inal

+ (V i−1f inal
− V i−2f inal

)
Ai − Ai−1

Ai−1 − Ai−2

,

although this is only of use where the relationship between Froude number and
amplitude varies monotonically.

The Newton’s method routine involves calculating a Jacobian matrix of first
derivatives at each iteration, J =

[
∂Ei/∂Vj

]
. For longer-wavelength cases and
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moderate amplitudes it was sufficient to calculate this matrix using a simple forward
difference routine. However, shorter-wavelength solutions were found to be more
sensitive to the choice of scaling parameters and it was difficult to calculate limiting
solutions when the approximate Jacobian was used. In such cases the exact Jacobian
was used, and this also saw a slight increase in the efficiency of the routine.

5. Results
The numerical scheme outlined in § 4 was run extensively. For each set of nonlinear

solutions the wavenumber was fixed and the lower-layer Froude number allowed to
vary with amplitude. Throughout, the density ratios were fixed at the same values
D1 = 0.99 and D3 = 1/0.99 illustrated in figure 2, for the linearized solution of § 3.
From figure 2 it may be seen that there are two regions of wavelength where three
linearized solutions of different lower Froude number exist. This was of consideration
in selecting the nonlinear solutions to compute, with a wavelength from each chosen
for further investigation. Firstly, a long-wavelength case (with two in-phase solutions
and one out-of-phase solution) at k = 0.5 was selected and, secondly, a shorter
wavelength case at k = 2.5 (with two out-of-phase solutions and one in-phase
solution) was also chosen. In each of these six cases the linearized solution agrees
very well with the computed small-amplitude nonlinear solutions. Unless otherwise
stated all solutions have been computed with N = 51, which was found to be a
sufficient number of coefficients to evaluate the interfacial profiles reliably.

It will be seen that many of the following results involve a delicate relationship
between F3 and amplitude, in which two solutions occur for nearly indistinguishable
values of those parameters. These fine features were obtained by first calculating
solutions using fewer coefficients (typically N = 31), for which such features are
much coarser, and less accurate. This lower-coefficient solution is then used as an
initial guess in Newton’s method to obtain results for solutions of successively more
coefficients (up to the desired N = 51) which would otherwise be extremely difficult
to compute from other starting guesses. As a check, results in a number of cases
have been run with as many as N = 101 Fourier coefficients; this is computationally
demanding, but does not significantly affect the results, confirming that the results
with N = 51 coefficients have already converged to a good degree of accuracy.

5.1. Results for k = 0.5

The first solution we will consider is the in-phase wave with positive lower-layer
Froude number. The linearized solution predicts that at small amplitudes F3 = 0.1556
with the amplitudes of the two interfaces in the ratio α = HU1/HL1 = 1.3177. The
nonlinear solution is shown in figure 4(a) as a solid curve, and the linearized result is
drawn with a dashed line. The two are in very close agreement for small amplitude.
However, as the nonlinear (AL, F3) curve is followed, a more complicated situation
arises.

At first, lower-layer Froude number increases with amplitude up to a maximum of
AL ≈ 0.6. This maximum corresponds to a solution for which there are two slightly
square sinusoids of similar amplitude on the two interfaces. From this maximum
both amplitude and lower-layer Froude number decrease, backtracking along the
(AL, F3) curve very closely, before diverging away from this at moderate amplitudes.
The solutions along this portion of the curve appear, initially, to approach the
configuration of a triangle wave on the upper interface and a moderate amplitude
sinusoid on the lower interface. However, near the solution at (AL, F3) ≈ (0.1, 0.24)
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Figure 4. (a) Dependence of Froude number F3 on lower-wave amplitude AL for k = 0.5, the
in-phase case with positive Froude number. (b) Four interfacial profiles for the in-phase case
with positive Froude number at k = 0.5. The solutions shown are (AL, F3) = (0.601, 0.167)
(solid lines), (AL, F3) = (0.0844, 0.232) (dashed lines), (AL, F3) = (0.133, 0.243) (dotted lines)
and (AL, F3) = (0.0547, 0.371) (dash-dot lines).

the upper interface develops a small lump at its trough, a feature that is maintained
as these solutions are followed in (AL, F3) space.

The interfacial profiles associated with the solutions from the first four of the
peak-like artifacts on the amplitude–Froude number curve are shown in figure 4(b).
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The largest of these, drawn with solid lines, represents a solution for (AL, F3) =
(0.601, 0.167). The dashed lines are the solution for (AL, F3) = (0.0844, 0.232), the
profiles for (AL, F3) = (0.133, 0.243) are illustrated with dotted lines while the dash-
dot lines represent the highest Froude number solution at (AL, F3) = (0.0547, 0.371).
In the last three of these solutions a dimple-like lump can be seen at the trough of the
upper interface. In addition, for the highest Froude number case a steep bump at the
crest of the upper interface has evolved. A bump of this type also appears in the last
solutions obtained before the numerical method diverged, and may possibly indicate
the incipient formation of a limiting structure such as an overhanging ‘mushroom’
near the crest.

The linearized solution for the out-of-phase branch at this wavelength predicts
that F3 = 0.02986, with α = −2.3013, shown in figure 5(a) as a horizontal dotted
line. Again, the nonlinear solution (the solid and dashed lines in figure 5(a), with the
amplitude AU of the upper interface being used for convenience) is in close agreement
with this for small amplitudes, but starts to decrease as amplitude is increased. Here
the (AU , F3) curve is made up of a series of disjointed sets of solutions shown
alternatively in solid and dashed lines for clarity. Each of these curves contains a
section that traces out part of a decrease in lower-layer Froude number for increasing
amplitude. This acts as a kind of lower bound in (AU , F3) space, with the convoluted
(AU , F3) curves which bifurcate off from the branch never crossing below it. In this
region both interfacial profiles are nearly sinusoidal.

Above this lower bound the various (AU , F3) curves are quite convoluted, with
the two variables related in a highly nonlinear fashion. Here the lower interfacial
profiles are distinguished by the presence of a superposed wave of shorter wavelength
2π/nk, where n is an integer, on top of the primary wave of wavelength 2π/k. These
are a kind of superharmonic (1:n) resonance with the secondary mode of solutions
which are allowed at the same Froude number. This is confirmed by the fact that
the tangled nonlinear branches in figure 5(a) bifurcate from the lower branch at four
resonance values. Two of these resonant branches have been traced right back to
their intersection with the AU axis, showing that there are at least three solutions of
infinitesimal upper-interface amplitude, only one of which is a linearized solution. At
both these points the lower interface is of moderate amplitude.

Three of these superharmonic type solutions have been tracked exhaustively
(the 1:9, 1:10 and 1:11 cases) and some example wave profiles are shown in
figures 5(b)–(d). Two 1:9 resonance solutions of identical Froude number are plotted in
figure 5(b); here the solid lines are interfacial profiles for (AU , F3) = (0.0644, 0.310)
while the dashed lines are solutions for (AU , F3) = (0.0629, 0.310). Figure 5(c)
shows two 1:10 resonance solutions, again of similar Froude number, with the solid
lines being the solutions for (AU , F3) = (0.104, 0.303) and the dashed lines the
profiles for (AU , F3) = (0.0946, 0.303). The final class of superharmonic solutions
which were able to be computed accurately were 1:11 resonances. The solid lines
are the waves profiles for (AU , F3) = (0.109, 0.300), while the dashed lines are
profiles for (AU , F3) = (0.0980, 0.300). In each of these cases the shorter-wavelength
component may be superposed either in or out of phase with the primary wave. This
corresponds to the two curves which leave the main branch in figure 5(a) at each of the
superharmonic resonance bifurcations. As a consequence each of the disjoint curves in
the (AU , F3)-space may contain two types of superharmonic solution. For instance,
the first dotted line in figure 5(a) begins with an out-of-phase 1:9-type solution,
progresses until the short-wavelength component disappears with an in-phase 1:10
resonance being excited at a slightly larger amplitude.
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Figure 5(a, b). For caption see facing page.

The linearized solutions for 9k = 4.5 and 10k = 5 near the appropriate Froude
number are shown in figure 5(a) as horizontal dash-dot lines. It may be seen that in
each case the superharmonic is excited at a larger Froude number than linear theory
suggests is possible. Indeed it appears that the larger the amplitude of the primary
wave, the further from the linearized solution a superharmonic is first available.

The third linearized solution at this wavelength is an in-phase exchange flow with
F3 = −0.1567 and α = 0.7555, shown with the horizontal dotted line in figure 6(a).
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Figure 5. (a) Dependence of Froude number F3 on upper-wave amplitude AU for k = 0.5,
the out-of-phase case with positive Froude number. (b) Two interfacial profiles for the 1:9
resonance at equal lower-layer Froude number. The short-wavelength mode is out of phase
with the primary wave for the solution at (AU , F3) = (0.0644, 0.310) (solid lines) and in
phase for the solution at (AU , F3) = (0.0629, 0.310) (dashed lines). (c) Two interfacial profiles
for the 1:10 resonance at equal lower-layer Froude number. The short-wavelength mode is in
phase with the primary wave for the solution at (AU , F3) = (0.104, 0.303) (solid lines) and
out of phase for the solution at (AU , F3) = (0.0946, 0.303) (dashed lines). (d) Two interfacial
profiles for the 1:11 resonance at equal Froude number. The short-wavelength mode is out of
phase with the primary wave for the solution at (AU , F3) = (0.109, 0.300) (solid lines) and
in phase for the solution at (AU , F3) = (0.0980, 0.300) (dashed lines).
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Figure 6(a, b). For caption see facing page.

Again the nonlinear solution (the solid and dashed lines in figure 6a) is found to be
in strong agreement for small amplitudes. As amplitude is increased, Froude number
F3 becomes more strongly negative, with the two interfaces taking a slightly pointed
nonlinear wave shape, the lower profile having a larger amplitude than the upper.

At a moderate amplitude, about AL = 0.3, a 1:4 resonant interaction is excited and
Froude number begins to increase. Here the secondary wave is larger on the upper
interface and out of phase with the primary wave. As the (AL, F3) curve (the solid
line in figure 6a) is followed, the secondary wave becomes of moderate amplitude
itself. Some solutions of this type are shown in figure 6(b), with the superposed wave
itself clearly having a nonlinear shape with sharp troughs. The four wave profiles
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Figure 6. (a) Dependence of Froude number F3 on lower-wave amplitude AL for k = 0.5,
the in-phase case with negative Froude number. (b) Four interfacial profiles for AL = 0.32
with a 1:4 resonance in phase with the primary solution mode. The profiles shown are
for (AL, F3) = (0.32, −0.1614) (solid lines), (AL, F3) = (0.32, −0.1620) (dashed lines),
(AL, F3) = (0.32, −0.1612) (dash-dot lines) and (AL, F3) = (0.32, −0.1662) (dotted lines).
(c) Three interfacial profiles for AL = 0.32 with a 1:4 resonance out of phase with the
primary solution mode. The profiles shown are for (AL, F3) = (0.32, −0.1643) (solid lines),
(AL, F3) = (0.32, −0.1617) (dashed lines) and (AL, F3) = (0.32, −0.1613) (dash-dot lines).

in figure 6(b) are all of amplitude AL = 0.32, with the solid lines corresponding
to the profiles at (AL, F3) = (0.32, −0.1614), the dashed lines being the profiles
for (AL, F3) = (0.32, −0.1620), the solution at (AL, F3) = (0.32, −0.1612) being
represented by the dash-dot lines, and the dotted lines are the waves’ profiles for
(AL, F3) = (0.32, −0.1662).

The class of solution with an in-phase secondary wave is not as readily available
here as in the previous case. For these to be computed an initial guess in Newton’s
method was created, somewhat artificially, by taking an out-of-phase solution and
multiplying the coefficients B4, C4, D4, . . . by −1. Having done this the solutions of
the type shown in figure 6(c) were obtained, with the secondary wave of opposite
phase to the solutions of figure 6(b). These were tracked for some distance in the
parameter space, as seen in the dotted line on the (AL, F3) diagram in figure 6(a).
Three interfacial profiles are shown in figure 6(c) with solid lines corresponding
to the solution at (AL, F3) = (0.32, −0.1643); the dashed lines are the solutions
for (AL, F3) = (0.32, −0.1617) and the dash-dot lines represent the profiles for
(AL, F3) = (0.32, −0.1613).

It may be seen that up to 12 distinct solutions may be obtained for some values
of AL, such as in the highly tangled region near AL = 0.375. A slightly simpler
situation is represented by the seven simultaneous solutions available at the same
value AL = 0.32 of the amplitude, as shown in figures 6(b) and 6(c). The complexity
of the solution space is further emphasized by noting that the proximity of two
solutions on the (AL, F3) diagram is not an indication that their interfacial profiles
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are qualitatively similar. Yet another feature of these cases is the many sections of the
Froude number–amplitude diagram in figure 6(a) which run nearly parallel to each
other. In terms of the interfacial profiles these correspond to a situation where the
primary wave’s amplitude decreases as the secondary wave’s increases, or vice versa.
The situation for the in-phase solutions near AL = 0.4 is an example of this. Such an
occurrence seems in line with conventional thinking about the role of energy transfer
between solution modes in these sorts of resonant interactions (Phillips 1974). Both
classes of solutions terminate by crossing back onto a previously calculated solution
(in both cases at AL ≈ 0.3), thus forming a complicated kind of loop structure.

5.2. Results for k = 2.5

For the in-phase solution at this wavelength, linearized theory predicts F3 = 0.03925
with α = 0.04768; that is, a lower interface of much larger amplitude than the upper.
The nonlinear solutions (shown as a solid line in figure 7a) agree well with both
predictions and we see a similar situation to that of figure 4(a) (a longer-wavelength
example from the same mode of solutions). Again, Froude number F3 increases with
amplitude, reaching a maximum at the moderate value AL = 0.19 of the wave
amplitude. These solutions are characterized by a nearly flat upper interface and a
slightly square lower interface of moderate amplitude.

The (AL, F3) curve then turns back on itself and traces out a complicated
relationship featuring numerous sharp turning points. As before, the solutions
near these points correspond to dimpled waves, several of which are shown in
figure 7(b). The solution of largest amplitude (AL, F3) = (0.188, 0.0421) is shown with
a solid line, two moderate amplitude solutions at (AL, F3) = (0.0693, 0.0594) and
(AL, F3) = (0.0986, 0.0447) are shown with dashed and dash-dot lines, respectively.
The last computed solution, at (AL, F3) = (0.138, 0.0537) and shown in figure 7(b)
with dotted lines, represents the point at which our numerical method failed to
continue the branch shown in figure 7(a). No geometric limitation is obvious from
these results, but it is possible that some subtle structure may be formed in the
interface profiles that prevents the numerical method from continuing further.

Linear theory predicts two out-of-phase solutions at this wavelength, one at F3 =
−0.064414 with a large lower interface (α = −0.1126) and another at F3 = −0.29616
with a large upper interface (α = −25.8476). Both of these are shown with horizontal
dashed lines in figure 8(a).

The solid lines in figure 8(a) are nonlinear solutions for N = 51. The two solution
branches are evidently not connected in (AU , F3) parameter space. Both sets of
nonlinear solutions agree well with linear theory at small amplitudes, and this predicts
that the relative amplitudes of the two interfaces in each case will be quite different.
Again we see monotonic variation in Froude number as amplitude is increased, up
to some maximum before the (AU , F3) curves turn back on themselves and then
progress in a complicated fashion.

Solutions on the curve originating from the higher-speed exchange flow are
shown in figure 8(b). These four curves correspond to the interfacial profiles for
(AU , F3) = (0.1388, −0.2591), shown with solid lines, the dashed lines are the solution
for (AU , F3) = (0.05704, −0.07093), the solution for (AU , F3) = (0.6327, −0.1267) is
shown by dash-dot lines and the dotted lines represent the profiles for (AU , F3) =
(0.1053, −0.2154).

These solutions have upper interfaces of much larger amplitude than their lower
interfaces at smaller amplitude AU . As the solutions are tracked, the interfaces become
of comparable amplitude. In particular, the lower interface develops dimple-like
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Figure 7. (a) Dependence of Froude number F3 on lower-wave amplitude AL for k = 2.5, the
in-phase case with positive Froude number. (b) Four interfacial profiles for the in-phase case
with positive Froude number at k = 2.5. The profiles shown are for (AL, F3) = (0.188, 0.0421)
(solid lines), (AL, F3) = (0.0693, 0.0594) (dashed lines), (AL, F3) = (0.0986, 0.0447) (dash-dot
lines) and (AL, F3) = (0.138, 0.0537) (dotted lines).

features at its trough and crest, as well as increasing in mean height. The upper
interface, however, remains approximately sinusoidal. It is possible that the dotted
profile for (AU , F3) = (0.1053, −0.2154) is close to a limiting solution with an
overhanging structure at the crest of the lower interfacial wave, since near-vertical
portions are present in the computed profile.
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Figure 8(a, b). For caption see facing page.

The case originating from the slower exchange flow displays a similar pattern of
behaviour. Some example solutions may be seen in figure 8(c). The profiles shown
with solid lines are for the parameters values (AU , F3) = (0.01951, −0.06958), the
dashed lines show the solution for (AU , F3) = (0.03172, −0.1562), the solution for
(AU , F3) = (0.01534, −0.07866) is shown with dash-dot lines and the dotted lines are
the profiles for (AU , F3) = (0.07627, −0.1875).
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Figure 8. (a) Dependence of Froude number F3 on upper-wave amplitude AU for k = 2.5,
both the out-of-phase cases with negative Froude number. (b) Four interfacial profiles
originating from out-of-phase case with large negative Froude number at k = 2.5. The profiles
shown are for (AU , F3) = (0.1388, −0.2591) (solid lines), (AU , F3) = (0.05704, −0.07093)
(dashed lines), (AU , F3) = (0.6327, −0.1267) (dash-dot lines) and (AU , F3) = (0.1053, −0.2154)
(dotted lines). (c) Four interfacial profiles originating from out-of-phase case with small negative
Froude number at k = 2.5. The profiles shown are for (AU , F3) = (0.01951, −0.06958) (solid
lines), (AU , F3) = (0.03172, −0.1562) (dashed lines), (AU , F3) = (0.01534, −0.07866) (dash-dot
lines) and (AU , F3) = (0.07627, −0.1875) (dotted lines).

Here the interfacial profiles possess a larger-amplitude lower interface for small
to moderate amplitudes. Past the first sharp feature on the (AU , F3) curve in figure
8(a) the two interfaces eventually become of similar amplitude. These solutions are
qualitatively similar to those calculated for the fast exchange flow, with lumps at their
peaks and troughs. Indeed, the last computed solutions from the two (AU , F3) curves
closely resemble each other, both having a lower interface which displays lumps as
well as a significant positive mean displacement.

Notice that there is, in fact, a second small disjoint branch of solutions in (AU , F3)
parameter space just beyond AU = 0.14. This is shown in figure 8(a). It may represent
a remnant of a subharmonic solution which is not able to be continued accurately
numerically here beyond the small portion shown.

6. Discussion and conclusion
This paper has presented a wide array of nonlinear solutions to the problem of

steady periodic waves on an intrusion layer with constant vorticity. These were seen
to agree well with the predictions of linear theory for small amplitudes, with nonlinear
effects leading to some highly irregular behaviour for moderate and large amplitudes.
Small amplitude solutions which did not coincide with the linearized solution were
also present. The numerical scheme used was a straightforward extension to that of
Michallet & Dias (1999) and Forbes et al. (2006), with a reparametrization of the
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problem using arclength to allow for the possibility of overhanging waves. Although
no such waves were computed, the possibility of overhanging limiting profiles was
suggested by some of the numerical results. In addition it is possible that overhanging
waves might be encountered for different (and less relevant) values of the physical
parameters; their absence does not reveal a limitation of the numerical technique, and
in fact such solutions would be subject to Rayleigh–Taylor instability, so that interest
in them is somewhat academic. In this paper, we chose density ratios close to unity
to represent a stratified ocean or reservoir, whereas the dramatically overhanging
solitary waves computed by Rus̊as & Grue (2002) were for fluid density ratios (in our
notation) of D1 = 0.57 and D3 = 1.43. When this choice of density ratio was used
in the present problem no overhanging profiles were obtained, however, suggesting
that the profiles of Rus̊as & Grue were due (at least in part) to the presence of a
horizontal wall in the bottom fluid layer.

It has been assumed here that the shear in the middle layer is exactly the amount
required to make the velocity profile in the three fluids continuous, when both
interfaces are horizontal. This was done to mimic the expected effects of viscosity.
However, as the fluids here are inviscid, tangential slip at each interface is possible, and
so equation (2.3) could be replaced with the more general sheared flow F2 = F3 + γy,
in which the extra parameter γ is left arbitrary. We have made some preliminary
investigations of the effect of varying this parameter γ , but find no major qualitative
differences with results presented here. A systematic study of the complete range of
possibilities for this parameter’s effect on the behaviour of solutions is beyond the
scope of the present investigation and, in any event, the value of γ = (F1 − F3) used
here is surely of the most physical relevance.

A variety of superharmonic resonances between the different solution modes were
computed in this study. In the out-of-phase case at k = 0.5, where successive 1 : n

resonances were computed with the shorter wavelength component either in or out of
phase, this type of solution was especially abundant. It was seen that, in a nonlinear
regime, these resonances were able to be excited at an earlier wave speed than linear
theory predicted, with this effect becoming more pronounced for larger-amplitudes of
the primary mode of solution.

The stability of the nonlinear solutions is an open question. The infinitesimal
solutions of § 3 will be neutrally stable. Further investigation is required, however,
to determine the precise nature of the finite amplitude solutions in a time-dependent
regime. It was seen that, where resonant effects were not present, the maximum-
amplitude solutions were quite weakly nonlinear and without any obvious geometric
limitation. This appears to be in line with the notion of a ‘dynamical limit’, as
suggested by Saffman & Yuen (1982), the point beyond which any larger-amplitude
solutions will be unstable. Future work will include formulating a time-dependent
version of this problem, possibly in a similar manner to that which the Rayleigh–
Taylor instability was computed by Forbes, Chen, & Trenham (2007). Such a technique
would easily permit a finite-amplitude solution computed in this paper to be used as
an initial condition in a time-dependent formulation of the flow.
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